Why economists need to know the neuroscience

A. David Redish

Department of Neuroscience University of Minnesota

<u>redish@umn.edu</u>

Any given normative model is only compatible with some process models.

🚧 University of Minnesota

Process models change the space of normative options available.

Process models have normative consequences.

The normative model

🚧 University of Minnesota

Marr's levels

🦾 University of Minnesota

Let's first define *decision-making* as *action-selection*

UNIVERSITY OF MINNESOTA

Carter and Redish 2016

Buying a house..

What is the <u>information process</u> that led one to make that decision to take that action?

Buying or selling stocks

Consumer purchases

Gambling

Computation is about how *information* is stored and transformed through the process.

A new microeconomic model

Decisions

- Reflexes: prewired responses to stimuli.
- Instinctual: learning the situation to release prewired actions.
- Deliberation: search and evaluate potential consequences.
- Procedural (habits): cached action-chain sequences.

🌇 University of Minnesota

System I and System II

Following 1960's psychology, economics accepted the idea that there were two systems, a deliberative, rational System I and put everything else into a heuristic, biased System I.

UNIVERSITY OF MINNESOTA

The instinctual system is at least as different from procedural as either is from deliberation.

System I lumps all computational consequences together including not only decision-making but also the mechanisms of perception and attention, motor control.

Deliberation also has computational limitations.

Dual process theories

Classic psychology suggests that we have **two** decision systems:

a *better (human) cognitive system* and a *worse "animal" one*.

The Bene Gesserit *gom jabbar* sifting for humans.

- Dune (Frank Herbert)

Dual process theories

Classic psychology suggests that we have two decision systems:

a better (human) cognitive system and a worse "animal" one.

DAVID

There are more than two systems. All of these systems are useful. They are optimized for different situations.

The "horse and rider" th

THINKING, FASTANDSLOW WHO'S IN CHARGE? DANIEL FREE WILL AND THE SCIENCE OF THE BRAIN KAHNEMAN MICHAEL S. GAZZANIGA UNIVERSITY OF MINNESOTA

A new microeconomic model

You are all of these systems.

We need to think computationally.

Decisions

Reflexes: prewired responses to stimuli.

Instinctual: learning the situation to release prewired actions.

Deliberation: search and evaluate potential consequences.

Procedural (habits): cached action-chain sequences.

🚧 University of Minnesota

Reflexes

Reflexes are prewired responses to stimuli, learned over evolutionary time through genetic algorithms (trial search by sampling).

Downward Parachute Reflex (Protective Extension Reaction Downward)

Depends on spinal function

Learning within the lifespan is limited to habituation, sensitization, and simple threshold adjustments.

Decisions

Reflexes: prewired responses to stimuli.

Instinctual: learning the situation to release prewired actions.

Deliberation: search and evaluate potential consequences.

Procedural (habits): cached action-chain sequences.

🌇 University of Minnesota

Pavlovian (Instinctual)

Instinctual systems associate stimuli with outcomes, so that observation of a stimulus will lead to the <u>expectation of an outcome</u>, leading to the release of <u>pre-wired actions</u>.

There is a <u>limited repertoire</u> of available actions.

Pavlovian (Instinctual)

The instinctual repertoire are the basic survival circuits of Fight ... flight ... food ... and reproduction the mating dance (flirting).

Laughing with your friends is Pavlovian.

In fact a lot of social interactions are "Pavlovian" (instinctual) and use these same neural circuits.

The endowment effect

Pavlovian systems can only access immediate rewards.

This provides an excess valuation to immediate options.

The Marshmallow Test

Decisions

Reflexes: prewired responses to stimuli.

Instinctual: learning the situation to release prewired actions.

Deliberation: search and evaluate potential consequences.

Procedural (habits): cached action-chain sequences.

🌇 University of Minnesota

Deliberation

Depends on hippocampus, medial prefrontal cortex, orbitofrontal cortex, nucleus accumbens core, dorsolateral prefrontal cortex.

Deliberation entails actual imagination of potential outcomes, and then an evaluation of that outcome.

$$S \xrightarrow{a_1} S_1 - E(S_1) - E(V)$$

$$S \xrightarrow{a_2} S_2 \xrightarrow{a_3} S_3 - E(S_3) - E(V)$$

$$a_4 \xrightarrow{a_4} S_4 - E(S_4) - E(V)$$

Notice that we are **computationally** defining (reifying) this process, which allows us to look for these processes in non-linguistic animals.

Decisions

- Reflexes: prewired responses to stimuli.
- Instinctual: learning the situation to release prewired actions.
- Deliberation: search and evaluate potential consequences.
- Procedural (habits): cached action-chain sequences.

Procedural habits

Procedural habits are learned slowly, allowing them to be fast and reliable but inflexible in their execution. Recognizing the situation

(Perception [cortex])

Release a well-learned (arbitrary) action chain [dorsolateral striatum]

Actions without learning Situations learned.

Actions and situations must both be reliable.

Learn structure of world. Plan actions on it

Increasing regularity in the environment and actions taken

Actions without learning Situations learned.

Learn structure of world. Plan actions on it Actions and situations must both be reliable.

Override as regularities are recognized

Pop-up in times of change

Utility theory

Deliberation depends on sampling.

This makes it inconsistent.

Procedural is a table-lookup.

This makes it consistent.

Decisions

Reflexes: prewired responses to stimuli.

Instinctual: learning the situation to release prewired actions.

Deliberation: search and evaluate potential consequences.

Procedural (habits): cached action-chain sequences.

🚣 University of Minnesota

Memory is a process of moving the pattern of neurons to a previously stored pattern.

The means that memory is **constructed**.

Memory is addressed by *content*.

Memory is fragile, and suggestible

In 1974, Elizabeth Loftus and John Palmer found that the way a question was asked could change the memory.

Notice that this gives you **hindsight bias**.

NIVERSITY OF MINNESOTA

How fast were the cars going when they ______each other? **Speed Estimate** (miles per hour)

Was there broken glass?

Framing

Because memory is *content addressable,*

the initial pattern will modify the final recalled pattern.

The anchoring effect

What are the last two digits of your social security number?

How many countries are in the UN?

This is a new microeconomic model

Decisions

Reflexes: prewired responses to stimuli.

Instinctual: learning the situation to release prewired actions.

Deliberation: search and evaluate potential consequences.

Procedural (habits): cached action-chain sequences. Parception works by categorizing situations and is not veridial. Past experience Sensory cues Goals Motivation is a memory process

🚜 University of Minnesota

A. DAVID REDISH

The endowment effect

Pavlovian systems can only access immediate rewards. This provides an excess valuation to immediate options.

A UNIVERSITY OF MINNESOTA

Deliberation depends on sampling.

This makes it inconsistent.

This makes it consistent

ZZA UNIVERSITY OF MINNESOTA

Framing

the initial pattern will modify the final recalled pattern.

Because memory is

content addressable.

ZZA UNIVERSITY OF MINNESOTA

Runne Johnson Malson Redich (2022) / Mauracei Ruschalams Economics

This is a new microeconomic model

A. DAVID REDISH

A sensitivity to sunk costs Economics in non-human animals

1

Sunk costs in mice, rats, and humans

- Rats run around a circular track for food reward.
- Humans surf a web interface for videos to watch.
- Because they have a **limited time on the track**, waiting for one reward must be balanced against waiting for another.

NIVERSITY OF MINNESOTA

Preferences

- Every subject we've run on this task (mouse, rat, human) has shown measurable
- medsurable
- preferences.

Operationalizing sunk cost sensitivity

Sensitivity to sunk costs arises when decisions are made based on past expenses rather than future expectations.

Sunk costs in the wait zone

Time remaining (s)

UNIVERSITY OF MINNESOTA

Redish, Abram, Cunningham, Duin, Durand-de Cuttoli, Kazinka, Kocharian, MacDonald, Schmidt, ...

Schmitzer-Torbert, Thomas, Sweis (2022) Communications Biology

Sweis, Abram, Schmidt, Seeland, MacDonald, Thomas, Redish (2018) Science

Sunk costs in the offer zone

We can make the same measurements based on time spent in the offer zone.

No sunk costs in the offer zone

Sunk costs only start to accrue after **investment** in a choice.

Sunk costs only start to accrue after **investment** in a choice.

In the human task literature, one talks of a **commitment to task engagement** as "crossing the rubicon".

Entering the wait zone is a *rubicon*.

Sunk costs only start to accrue after investment in a choice

Dithering is a sign of deliberation, during which hippocampal representations sweep ahead of the animal along multiple choices, and depend on prefrontal cortical integrity.

Instinctual Pavlovian systems Quitting arises from a re-evaluation of the choice and a prefrontal override. Sunk costs are increased by increasing amygdala connections to the nucleus accumbens shell. Redish (2016) Nature Reviews Neuroscience

Lind (Larson), Sweis, Asp, Esguerra, Silvis, Redish, Thomas (2023) *Communications Biology* Sweis, Larson (Lind), Thomas, Redish (2018) *PNAS* Kocharian, Redish, Rothwell (2024) *bioRxiv*

Contingency management How you ask the question matters

regretfulrats.com

Which one?

Contingency management

If you don't use drugs for a week, then you receive a small reward.

Price per unit of commodity

Demand curve from Bruner and Johnson 2014

Current theory:

- The reward is an *alternate reinforcer*.
- Losing it increases the *opportunity costs* of the drug.

But the rewards are small.

And drugs are supposed to be inelastic.

LUNIVERSITY OF MINNESOTA

Contingency management

If you don't use drugs for a week, then you receive a small reward.

Current theory:

- The reward is an *alternate reinforcer*.
- Losing it increases the *opportunity costs* of the drug.

But the rewards are small.

And drugs are supposed to be inelastic.

Contingency management

If you don't use drugs for a week, then you receive a small reward.

Current theory:

- The reward is an *alternate reinforcer*.
- Losing it increases the *opportunity costs* of the drug.

But the rewards are small.

And drugs are supposed to be inelastic.

Regier, Redish (2015) Frontiers in Psychiatry;

🚧 University of Minnesota

Davidson, Traxler, DeFulio, Redish, Royle, Gass (2024) Journal of Applied Behavioral Analysis

An alternate hypothesis

We know that there are multiple decision systems and that different situations can drive an animal to use different decision systems.

Maybe contingency management is transforming an *Is it worth it?* decision into a *Which one?* decision.

Willing to pay ≠ choose between

Deliberation depends on imagination

$$S \xrightarrow{a_1} S_1 - E(S_1) - E(V)$$

$$S \xrightarrow{a_3} S_3 - E(S_3) - E(V)$$

$$a_2 \xrightarrow{S_2} S_2$$

$$a_4 \xrightarrow{S_4} - E(S_4) - E(V)$$

We can make the second option more concrete.

We can teach people to think about the future.

Snider, LaConte, Bickel (2016) Alcohol Clinical Experimental Research

1.2

Trust and community Making yourself vulnerable to others

Actions without learning Situations learned.

Learn structure of world. Plan actions on it

Actions and situations must both be reliable.

Trust is being willing to make yourself vulnerable to another.

Pavlovian/Instinctual actions

Actions without learning Situations learned.

Learn structure of world. Plan actions on it

Actions and situations must both be reliable.

- Trust is being willing to make yourself vulnerable to another.
- Instinctual trust arises from family and tribalism.
- It is based on community and is explicitly not transactional.

Actions without learning Situations learned.

Learn structure of world. Plan actions on it

Actions and situations must both be reliable.

- Trust is being willing to make yourself vulnerable to another.
- Deliberative trust is based on the logic of prediction.
- It is explicitly transactional, and depends on explicit expectations.

JNIVERSITY OF MINNESOTA

Actions without learning Situations learned.

Learn structure of world. Plan actions on it

Actions and situations must both be reliable.

- Trust is being willing to make yourself vulnerable to another.
- **Procedural trust**

UNIVERSITY OF MINNESOTA Redish, Chastain, Re

- Trust is being willing to make yourself vulnerable to another.
- Procedural trust depends on practice and regularity of behavior.

Actions without learning Situations learned.

Learn structure of world. Plan actions on it

Actions and situations must both be reliable.

Allen, Kizilcec, Redish (2024) arXiv

🚧 University of Minnesota

Redish, Chastain, Runge, Sweis, Allen, Haldar (2024) Neuroeconomics: Core Topics and New Directions

Community

This means that building a community depends on community construction (social codes) that interact with these decision systems.

BANK FOR THE POOR

Actions without learning Situations learned.

Learn structure of world. Plan actions on it Practice leads to automated behavior

Actions and situations must both be reliable.

Chilean fishing boats

The Oosterscheldekering Keeping out the North Sea

A. David Redish <u>redish@umn.edu</u> redishlab.umn.edu

Why do economists need to know the neuroscience?

CHANGING

WE CHOOSE

A. DAVID REDISH

HOW

THE MIND

A. DAVID REDISH

Because the neuroscience provides a new microeconomic model... with real policy consequences.

Society for NeuroEconomics

NEUROSCIENCE • PSYCHOLOGY • ECONOMICS

https://neuroeconomics.org/

The Royal Sonesta Boston

A. David Redish <u>redish@umn.edu</u> redishlab.umn.edu

Why do economists need to know the neuroscience?

CHANGING

WE CHOOSE

A. DAVID REDISH

HOW

THE MIND

A. DAVID REDISH

Because the neuroscience provides a new microeconomic model... with real policy consequences.

