Shift-Share Instrumental Variables

Raahil Madhok, University of Minnesota

APEC Skills Workshop

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 1/23

Plan for Today

- ► What is a shift-share IV?
- What are the identification assumptions?
- ► How do I implement it?

This hour will be more conceptual than mathematical

What is a shift-share IV?

The first time I saw SSIV

- "Dams" by Esther Duflo and Rohini Pande (2005)
 - What is the impact of dams on poverty?
 - Idea: instrument dam incidence with river gradient
- ▶ Problem: $D_{ist} = \alpha + \beta RG_i + \gamma_i + \mu_{st} + \epsilon_{ist}$
- Solution: $D_{ist} = \alpha + \beta (RG_i \times \overline{D_{st}}) + \gamma_i + \mu_{st} + \epsilon_{ist}$

where
$$\underbrace{D_{st} = D_t \times share_{s(t=1970)}}_{SSIV}$$

・ロト ・回ト ・ヨト ・ヨト ・ヨー

What is a shift-share IV?

Weighted sum of common shocks with weights equal to heterogeneous exposure shares

$$z_l = \sum_n g_n s_{lr}$$

- Shocks vary at a different "level", n = 1, ..., N than the shares l = 1, ..., L, where we also observe outcome, y_l, and treatment, x_l.
- ▶ Goal: use *z*_l to estimate causal treatment effects
- e.g. estimate parameter β from model $y_l = \beta x_l + \epsilon_l$

Under what assumption is β identified?

Example I: Blanchard and Katz (1992)

Instrument
$$z_l = \sum_n \underbrace{g_n}_{shift} \underbrace{s_{ln}}_{share}$$
 for model $y_l = \beta x_l + \gamma' w_l + \epsilon_l$

- $\triangleright \beta =$ inverse local labor supply elasticity
- \triangleright x_l = employment growth in region l
- \blacktriangleright y_l = wage growth in region l

Example I: Blanchard and Katz (1992)

Instrument
$$z_l = \sum_n \underbrace{g_n}_{shift} \underbrace{s_{ln}}_{share}$$
 for model $y_l = \beta x_l + \gamma' w_l + \epsilon_l$

- $\beta = \text{inverse local labor supply elasticity}$
- \blacktriangleright x_l = employment growth in region l
- \triangleright y_l = wage growth in region l
- need a labor demand shifter as an IV
- \triangleright g_n = national growth of industry n
- s_{In} lagged employment share (of industry n in region I)
- \triangleright z_I = predicted employment growth due to national industry trends

Example II: Imbert et al. (2022)

Instrument
$$z_l = \sum_n \underbrace{g_n}_{shift} \underbrace{s_{ln}}_{share}$$
 for model $y_l = \beta x_l + \gamma' w_l + \epsilon_l$

- $\beta = \text{impact of migrant inflows on firm productivity}$
- \blacktriangleright x_l = migration into region l
- ▶ y_I = firm outcome region I

Example II: Imbert et al. (2022)

Instrument
$$z_l = \sum_n \underbrace{g_n}_{shift} \underbrace{s_{ln}}_{share}$$
 for model $y_l = \beta x_l + \gamma' w_l + \epsilon_l$

- $\beta = \text{impact of migrant inflows on firm productivity}$
- \triangleright x_l = migration into region l
- \blacktriangleright y_l = firm outcome region l
- need an IV for migrant flows
- ▶ g_n = shock to ag incomes in origin $o \in \Omega/n$
- s_{In} settlement patterns of past migration from I to n
- \triangleright z_I = predicted migrant inflows to region *I* due to ag shocks in origin

Building Blocks of SSIV

- The shift-share does not need to be cleverly "made up"
- First, decompose treatment variation into space and time
- Let X_{lt} be crop output in county l for t = 0, 1; $x_l = \frac{X_{l1} X_{l0}}{X_{l0}}$ is crop growth
- ▶ We can further decompose local production over crops *n* as follows:

$$x_{l} = \sum_{n} \underbrace{\frac{X_{ln0}}{X_{l0}}}_{\text{local share}} \cdot \underbrace{x_{ln}}_{\text{local shift}} \quad \text{where} \quad x_{ln} = \frac{X_{ln1} - X_{ln0}}{X_{ln0}}$$

local shifts reflect crop supply and demand – need to isolate supply variation

Construct SSIV by choosing common shift g_k to replace x_{lt} , e.g. $DegreeDays_{ltn}$

SSIV Validity Conditions

- Once you have found a z_l , think through the validity condition
- Standard IV assumption $E[z_l \epsilon_l] = 0$ does not hold!

SSIV Validity Conditions

- Once you have found a z_l , think through the validity condition
- Standard IV assumption $E[z_l \epsilon_l] = 0$ does not hold!
- \blacktriangleright Why? SSIV is a weighted sum of common shocks \rightarrow observations not i.i.d
- SSIV validity condition is $E[\frac{1}{L}\sum_{I} z_{I}\epsilon_{I}]$
- Dividing by L ensures asymptotic consistency

$$\frac{1}{L}\sum_{I} z_{I}\epsilon_{I} \xrightarrow{LLN} E[z_{I}\epsilon_{I}]$$

Takeaway: ensure exogeneity at aggregate level, not individual level

Summary of Validity Conditions

Feature	Standard IV	SSIV
Exogeneity Condition	$E[z_\ell arepsilon_\ell]=0$	$E\left[rac{1}{L}\sum_\ell z_\ell arepsilon_\ell ight]=0$
Why?	Each unit gets an independent instrument	SSIV aggregates shocks across many units
Key Mechanism	Randomization or exclusion restriction at the unit level	Averaging over many shocks ensures exogeneity
What happens as $L o \infty$?	The instrument remains valid for each unit	Exogeneity holds in expectation over all units

What properties of shifts and shares make this condition hold?

Identification I: Shares are Exogenous

- Developed by Goldsmith-Pinkham et al. (2020), AER
- Imagine s_{In} is randomly assigned to units and exclusion restriction holds
 Implies that, without treatment, units with different exposures would have trended similarly
- Equivalent to pooling diff-in-diff for each industry n
- i.e., a unit hit more by the shock, as captured by its randomly-assigned sin, would have trended similarly if it were non-exposed
- Must assume no unobserved shocks that affect outcome via same shares

Example: Mariel Boatlift (Card, 1990)

• Goal: Estimate β = elasticity b/w migrant vs. native workers in labour demand

 $y_l = \beta x_l + \gamma' \omega_l + \epsilon_l$

- > y_l = relative wages, x_l = rel. employment in location l
- Shift: sudden inflow of Cuban immigrants; Share: lagged Cuban workers in I
- Must assume regions more/less exposed to inflow (based on shares) have parallel trends in demand for migrant vs. native labour
- Equivalent to SSIV with Cuban inflows = 1, other countries = 0
- SSIV compares before/after shock, across cuban shares, and pools over all origins

More formally...

Step 1: Start with the SSIV Instrument

$$E\left[\sum_{\ell} z_{\ell} \varepsilon_{\ell}\right] = E\left[\sum_{\ell} \sum_{n} s_{\ell n} g_{n} \varepsilon_{\ell}\right]$$

Step 2: Move Expectation Inside the Summation (Linearity Assumption)

$$E\left[\sum_{\ell}\sum_{n}s_{\ell n}g_{n}\varepsilon_{\ell}\right]=\sum_{\ell}\sum_{n}g_{n}E[s_{\ell n}\varepsilon_{\ell}]$$

Step 3: Apply LIE + Share Exogeneity Assumption

$$E[s_{\ell n}\varepsilon_{\ell}] = E[s_{\ell n}]E[\varepsilon_{\ell}|s_{\ell n}] = 0$$

Step 4: Final Result: $\sum_{\ell} \sum_{n} g_n E[s_{\ell n}] \cdot 0 = 0$

Identification II: Shifts are Exogenous

- Borusyak, Hull and Jaravel (2022), ReStud
- ldentification comes from shifts being uncorrelated w/ ϵ_I
- Example: suppose we want an instrument for wages x_l
 - lottery randomly assigns subsidy g_n (shift) to industry n.
 - **•** employment growth, x_l , instrumented by wt. avg. of subsidies, using initial employment share as weight
 - exclusion restriction: subsidy affects wages by shifting labour demand, not supply
- BHJ (2022): share-weighted average of random shifts is itself as-good-as-random, even shares are endogenous
- ln practice: $g_n \perp$ average ϵ_l across units with weights s_{ln}
 - subsidies, even if not truly random, should not vary systematically with ϵ_I

A practical example from my research

$$X_{id} = \phi \cdot \Delta s_d + \Gamma \cdot \Delta inc_d + \gamma_s + \varepsilon_{ijd}$$

	(1)	(2)	(3)	(4)	(5)
	Males	Educated	Farm Size	Ag. HH	Landowner
Δ Wt. Income	0.078	0.235***	-0.943	0.044	-0.070
	(0.068)	(0.079)	(0.575)	(0.037)	(0.047)
Δ Origin Income	Yes	Yes	Yes	Yes	Yes
State FEs	✓	✓	✓	✓	√
N	38589	38589	12355	38589	38588
R ²	0.021	0.020	0.103	0.051	0.088

Extension: what about spillovers?

- ▶ If employment in industry *n* declines after shift, agg. employment may not change
- Solution: specify SSIV at level of region/labour market
 - Captures spillovers when workers move across industries in response to subsidies
- BHJ (2022): use SSIV as a "translation device"!
 - i.e. Reframe SSIV as an IV problem at aggregate level
- Numerical equivalence:

Numerical Equivalence

IV Estimator at the Unit Level:
$$\hat{\beta} = \frac{\sum_{\ell} z_{\ell} y_{\ell}^{\perp}}{\sum_{\ell} z_{\ell} x_{\ell}^{\perp}} = \frac{\sum_{\ell} \sum_{n} s_{\ell n} g_{n} y_{\ell}^{\perp}}{\sum_{\ell} \sum_{n} s_{\ell n} g_{n} x_{\ell}^{\perp}}$$

Rewriting Using Summation Over Shocks:

$$\hat{\beta} = \frac{\sum_{n} g_{n} \sum_{\ell} s_{\ell n} y_{\ell}^{\perp}}{\sum_{n} g_{n} \sum_{\ell} s_{\ell n} x_{\ell}^{\perp}}$$

Defining Shock-Level Aggregates:
$$y_n^{\perp} = \frac{\sum_{\ell} s_{\ell n} y_{\ell}^{\perp}}{\sum_{\ell} s_{\ell n}}, \quad x_n^{\perp} = \frac{\sum_{\ell} s_{\ell n} x_{\ell}^{\perp}}{\sum_{\ell} s_{\ell n}}$$

Final Shock-Level IV Estimator:

$$\hat{\beta} = \frac{\sum_{n} s_{n} g_{n} y_{n}^{\perp}}{\sum_{n} s_{n} g_{n} x_{n}^{\perp}}$$

where $s_n = \sum_{\ell} s_{\ell n}$ represents the "importance" of shock *n*.

How do I implement SSIV?

Checklist for Share-based approach (BHJ, 2024)

- 1. Explain why shares are suitable IVs
 - should capture exposure to THAT shock only
- 2. Think about unit-level controls
 - ▶ e.g. total migration share, to leverage variation in migrant composition, not high/low intensity
- 3. Which shares matter most?
 - see Rotemberg weights in GPSS (2020) + bartik_weight command
 - focus on these shares for balance tests
- 4. Balance tests for individual shares

Checklist for shift-based approach (BHJ, 2024)

- 1. How does SSIV approximate idealized experiment?
- 2. Include incomplete share control, $S_l = \sum_n s_{ln}$
 - Ideally, SSIV is a weighted *average* of random shifts
 - Breaks down when SSIV is a weighted *sum*
- 3. Lag shares to base or pre-period
- 4. Balance tests for shifts

Another Example from my research

- A Practical Guide to Shift-Share Instruments, Borusyak et al. (2024) (see FAQ)
- ▶ General Equilibrium Effects in Space: Theory and Measurement, Adao et al. (2023)
- Quasi-Experimental Shift-Share Research Designs, Borusyal et al. (2022)
- Bartik Instruments: What, When, Why, and How, Goldsmith-Pinkham et al. (2020)